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GEMS LAB

Given a graph G = (V, E) with known edges E represented
in adjacency matrix A; feature vector x for each node;

Find in the graph
V| Features
Matrix
Formulation |V|| |V||n
....... /

Applications:

* Learn embeddings for a variety of
downstream tasks: query response,

reducing spam, universal embeddings, ...

» Specific link prediction applications:
graph completion, ...

Jing Zhu et. al



Dual Roles For Edges in LP ~ ¥esmsue

As prediction target Message Passing

message passing graph at training and/or testing time

Common practice: include target links in the %\é‘[?
a0

Figure credit: Muhan Zhang (winm) Jing Zhu et. al



GEMS LAB

« Most discussion about target edge inclusion falls into subgraph-
based methods at training time
- SEAL: noticed the inclusion of target links at training and
proposed negative injection
- FakeEdge: discussed the distribution shift issue and
resolved it via always adding or removing the target links,
or combining the strategies

* Here, we aim to show simply excluding all target links does not
fully solve the problem for both GAE and subgraph-based
method. We further extend the target edge inclusion
discussion to test time.

Jing Zhu et. al



GEMS LAB

We

propose first thorough theoretical and empirical analysis on the
effect of including target edges as message-passing edges at
training and test time.

We propose SpotTarget, which
automatically tackles these issues. We integrate this as a plug-
and-play framework into DGL.

We show that SpotTarget makes GNN

models up to 15x more accurate on sparse graphs, and
significantly improves their performance for low-degree nodes on

dense graphs.

Jing Zhu et. al



Training Pitfalls

Training Time

e Include

train target edges

o’““ o

(a) Train graph

(al) 1-hop train graph
: for nodes 1 and 2

Jing Zhu et. al
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Training I1:
Overfitting (a1)

Train prediction
targets can be seen
in the graph



Training Pitfalls

7/
A2 5
N, @b% Test Target Edge never :
/7 &@\ Observed
/ \‘b’ ~
X, » n
&

(b2) 1-hop test graph
(b) Test graph :  fornodesBandC :

Jing Zhu et. al



Training Time

(b) Test graph

o ©o

(a) Train graph

Training Pitfalls rioews e

Include
train target edges

(al) 1-hop train graph
for nodes 1 and 2

Test Target Edge never :

Observed

———————— E

(b2) 1-hop test graph :

for nodes B and C

Jing Zhu et. al

Training 12: Distribution shift
(a1, b2):

Discrepancy between the
graphs used during training
and test

Poor GNN generalizability!



(b) Test graph

Test Pitfalls

(b1) 1-hop test graph
for nodes B and C

Jing Zhu et. al
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................................

- Test Pitfalls 13

If test target edges exist in the MP graph, it

" 5  Cammsawe | results in higher likelihood of predicting
ST et edges existence
(b) Test graph f :

e+ 1 Overestimation of the model’s
... fornodesBandC predictive performance!

| 10
Jing Zhu et. al



GEMS LAB

Goal: Given a graph G, a link prediction task, and a base GNN

model in a mini-batch training setting, design a framework that
proposes solutions to best avoid the training and test pitfalls 11,
|12 and [3.

One straightforward solution is to exclude all target edges.
At training time, naive solution does not work well!

Jing Zhu et. al



q training target Q G
\ edge . :
\ T, Exclude all

° é train target edges > 9 °
/

0— 0—g¢

2-hop train graph ; 2-hop train graph (Exclude All)

« Graph Structure Corruption for the MP graph when ExcludeAll (isolated
components, isolated nodes).

« Batch size=1, too small MP graph, inefficiency and instability for
GNN training.

_ 12
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E Real Question

How can we achieve the best trade-off between

avoiding issues (I1)-(I2) and preserving the graph
structure in mini-batch training as much as possible?
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Lower-degree nodes have higher relative degree change before and
after excluding all train target links in each mini-batch.
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B4 @ Training Time Right Practice  #eevsw

+ For high degree nodes, issues from one neighboring nodes (11,12) are
diluted and tend not to affect much.

+ Only exclude the training target edges (T,,) incident to at least one low-
degree node.

g, S : o o
\ edge
\ . Tiow:Bxclude deg< 2
a_ : train target edges : a f_
:

2-hop train graph

_ 14
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E Theoretical Analysis Y GEMS LaB

« The change in influence that a random node v, has on a high-

degree node v, and a low-degree node v, before and after
excluding an edge incident to v, and v,, is higher on v;

Let v;, and v; be two nodes in a graph with degrees d;, > d;, and node v; be an arbitrary node
in the graph. Assume that ReLU is the activation function, the A-layer GNN is untrained, and all
random walk paths have a return probability of 0. We denote the effect of node v; on node vy,
after A-th layer GNN as x’,}xk where x5, ) are n—dimensional vectors indicating the embeddings
for nodes vy, v, respectively. Further we denote that effect of node v, on node v;, after removing

an incident edge to node vy, as th:ck. We define the change in effect of vx on v, before and
after removing an incident edge to vy, as distance function D(k,h) = 1 — E(&} k¢ /2} ,Tk,t)
for any entry 1 < s,¢t < n of z; and x;. Similarly, we define the change in effect of node vy
on v; as D(k,l) = 1 — E(&} xy/x] yxk,) for any entry 1 < s,¢ < n of z; and zx. Then,

D(k, k) < D(k,1).

_ 15
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@ Test Time Right Practice Fisems v

I==6

+ Exclude all test target links to prevent the data leakage.

« Implementation: A module that automatically checks for the presence of

test target edges in the inference graph and removes them if necessary.
O)

Algorithm 1 SPOTTARGET: Leakage Check(G)

1: Input: An input graph G, edge splits S, an argument K if valid edges
are used as inference inputs, K = {T, F}
2: Output: The desired inference graph Giyfer
// STEP 1. Check if the input graph contains validation and test edges
3: Cyalid = Check Existence (G, Syaliq)
4: Cest = Check Existence (G, Stest)
/] STEP 2. Delete test and validation edges according to user require-

ment
¢ if Ciegt is True then
Ginfer = RemoveEdge (G, Stest)
else
Ginfer = G
/I If Validation edges exist in the inference graph and it is not desired
9: if Cyyjiq is True and K is False then
10: Ginfer = RemoveEdge (Gixfer, Svalid)

2 =l &

X

11: return Gjyfer

_ 16
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GEMS LAB

Q1: How well does SpotTarget address issues (I1) and (12) on
commonly-used graph benchmarks, which are dense?

Q2: How well does SpotTarget perform on sparse graphs with very
skewed degree distributions?

Q3: How well does SpotTarget address issues (11)-(12) for edges
incident to low-degree nodes on popular benchmarks?

Q4: At test time, how much is the performance of GNN models
overestimated due to implicit data leakage (13)?

Dataset # Nodes # Edges Node deg. Attr. dim.
ogbl-collab [12] 235,868 2,358,104 8.20 128
ogbl-citation2 [12] 2,927,963 30,387,995 20.73 128
USAir [26] 332 3,402 10.25 332
E-commerce [25] 346,439 238,818 1.38 768

_ 17
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ETraining Pitfalls: Results on Dense Data#xeems e

Model ExcludeNone(Tr) ExcludeAll SPOTTARGET
Ogbl-Collab (H@50 T)
SAGE 48.57 £ 0.74 45.82 + 0.41 49.00 £ 0.65
MB-GCN 43.03 £ 0.50 37.75 £ 1.42 39.58 + 1.06
GATv2 45.61 + 0.85 45.71 + 0.87 45.46 + 0.19
SEAL 61.27 £ 0.28 |64.11 +0.30 | 64.57 + 0.30
Ogbl-Citation2 (MRR T)
SAGE 82.06 + 0.06 81.47 £ 0.17 82.18 £ 0.18
MB-GCN 79.70 £ 0.25 79.06 + 0.30 79.88 +£ 0.14
GATv2 OOM OOM OOM
SEAL 86.75 + 0.20 186.74 +£ 0.23 |  86.93 + 0.55
USAir (AUC 1)
SAGE 95.97 £ 0.17 95.71 + 0.12 96.19 + 0.53
MB-GCN 94.00 £ 0.14 94.09 + 0.11 94.28 + 0.15
GATv2 95.05 £ 0.66 95.66 + 0.24 95.87 + 0.46
SEAL 95.36 + 0.24 [95.94 + 0.04 6.39 + 0.09
Rank | 2.27 2.45

Across all datasets and
models, SpotTarget achieves
the best results compared
with ExcludeNone(Tr) and
ExcludeAll.

In many cases (6/11),
ExcludeAll leads to
performance degradation
because of corrupting the

structure of mini-batch
graphs.

127 > FakeEdge

Jing Zhu et. al
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raining Pitfalls:

Results on Sparse Data#»s=Ms e

SAGE MB-GCN GATv2
Metrics  ExcludeNone(Tr)  SPOTTARGET ExcludeNone(Tr) SPOTTARGET ExcludeNone(Tr) SPOTTARGET
MRR T 4.40 £ 0.31 65.85 + 0.31 17.07 = 7.38 69.67 + 0.52 5.98 + 0.56 69.44 + 0.55
H@10 7 6.55 + 0.37 89.67 £ 0.19 28.35 + 7.47 89.79 £ 0.25 9.64 + 1.10 90.52 £+ 0.26
H@117 3.04 + 0.31 52.84 + 0.46 10.83 + 5.21 57.63 £+ 0.57 3.94 + 0.81 57.11 + 1.03

SpotTarget achieves 14.9x better performance compared to ExcludeNone

across models.

This verifies empirically that low-degree nodes suffer more from issues |1 and
12, and excluding T\, Works well especially for datasets with many low-degree

nodes.

_ 19
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B Training Pitfalls: Results on Ty, Fesweue

Exclusion max(di,dj) <10 max(di,dj) <5 min(di;,dj) <10 min(di,dj) <5 min(d;,dj) =2 min(d;,dj) =1

ExcludeNone(Tr) 73.11 £ 0.25 62.15 +£0.84 78.78 £ 0.12 69.54 + 0.37 47.02 £+ 0.56 27.54 + 0.88
MRR T ExcludeAll 77.45 £ 0.41 75.39 + 1.42 79.17 £ 0.12 73.86 + 0.33 60.05 £ 1.11 48.60 = 1.11

SPOTTARGET 78.08 + 0.06 76.23 £ 0.56 79.30 £ 0.18 73.87 £ 0.18 61.48 + 0.51 51.47 + 2.51

« Comparing with ExcludeNone(Tr) and ExcludeAll, SpotTarget achieves better
performance on various types of edges that are incident to low-degree nodes.

_ 20
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Test Pitfalls: Data Leakage Quantification FraEms s

SPOTTARGET Baseline
Models
ExcludeValTst ExcludeTst ExcludeNone(Tst)
Ogbl-Collab (H@50 7)
SAGE 48.57 + 0.74 57.61 + 0.88 83.82 % 0.59 * Due to data Ieakage 13,
MB-GCN 43.03 + 0.50 50.53 + 1.10 75.41 + 0.43 .
GATv2 45.61£0.85  54.94+0.19 84.16 + 2.62 using test edges causes a
SEAL 57.50 = 0.31 55.16 + 1.94 99.91 + 0.05 .I:ake performance bOOSt
Ogbl-Citation2 (MRR 1)
SAGE 82.06 = 0.06 82.28 + 0.11 89.22 £+ 0.10 across datasets )
MB-GCN 79.70 £ 0.25 81.25 £+ 0.22 88.32 + 0.14
GATvV2 OOM OOM OOM ¢ |n rea|-WOr|d deployed
SEAL 86.75 £ 0.20 87.01 + 0.39 97.14 £ 0.18 SyStemS th IS ShOUld
USAir (AUC 1) | b’ ded
SAGE 95.97 = 0.17 95.51 £+ 0.53 99.15 £ 0.59 a Ways € avoideaq.
MB-GCN 94.00 + 0.14 94.11 £ 0.13 98.66 + 0.22
GATv2 95.05 + 0.66 94.07 + 0.21 98.96 + 0.11
SEAL 95.36 + 0.24 95.10 £+ 0.76 97.20 + 0.78
No Leakage? v v X
Deployment v v X

Jing Zhu et. al
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Training Time grert ey

’ (al) 1-hop train graph 7 (b1) 1-hop test graph
,{:o;é i for nodes 1 and 2 : Q. gg; for nodes B and C
e R
o o
(a) Train graph (b) Test graph
(22) 1-hop train graph (b2) 1-hop test graph
...fornedestand? e Sor modet B and €
Training Target Edges  Test Target Edges  Results Issues
Include (al) - X (I1) Overfitting
Include (a1) Exclude (b2) X (I2) Distribution shift
- Include (b1) X (I3) Leakage
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