
SpotTarget: Rethinking the Effect of Target Edges
for Link Prediction in Graph Neural Networks

Jing Zhu*, Yuhang Zhou*, Vassilis Ioannidis, Shengyi Qian, Wei Ai, Xiang Song, Danai Koutra

MLG – Aug.7 2023

Link Prediction (LP)
• Given a graph 𝒢 = (𝑉, 𝐸) with known edges 𝐸	represented

in adjacency matrix 𝐀; feature vector 𝐱 for each node;
• Find other potential edges in the graph

2

Applications:
• Learn embeddings for a variety of

downstream tasks: query response,
reducing spam, universal embeddings, ...

• Specific link prediction applications:
graph completion, …

Jing Zhu et. al

Dual Roles For Edges in LP

3Figure credit: Muhan Zhang (wlnm)

yx ?

Common practice: include target links in the
message passing graph at training and/or testing time

Jing Zhu et. al

yx

As prediction target Message Passing

Previous Works

4

• Most discussion about target edge inclusion falls into subgraph-
based methods at training time

- SEAL: noticed the inclusion of target links at training and
proposed negative injection

- FakeEdge: discussed the distribution shift issue and
resolved it via always adding or removing the target links,
or combining the strategies

• Here, we aim to show simply excluding all target links does not
fully solve the problem for both GAE and subgraph-based
method. We further extend the target edge inclusion
discussion to test time.

Jing Zhu et. al

Contributions
• Systematic Analysis of the Target Link Inclusion Practices: We

propose first thorough theoretical and empirical analysis on the
effect of including target edges as message-passing edges at
training and test time.

• Efficient Unified Framework: We propose SpotTarget, which
automatically tackles these issues. We integrate this as a plug-
and-play framework into DGL.

• Extensive Experiments: We show that SpotTarget makes GNN
models up to 15× more accurate on sparse graphs, and
significantly improves their performance for low-degree nodes on
dense graphs.

5
Jing Zhu et. al

Training Pitfalls

6
Jing Zhu et. al

Training Time

0 1

2 3

4
tra

ini
ng

 ta
rge

t

ed
ge

Include
train target edges

0 1

2 3

(a1) 1-hop train graph
for nodes 1 and 2

Training I1:
Overfitting (a1)

Train prediction
targets can be seen
in the graph

(a) Train graph

Training Pitfalls

7
Jing Zhu et. al

Test Time

Test Target Edge never
Observed

B

(b) Test graph

A

C D

E

F

?

tes
t ta

rge
t e

dg
e

A B

C D

(b2) 1-hop test graph
for nodes B and C

Training Pitfalls

8
Jing Zhu et. al

Training I2: Distribution shift
(a1, b2):

Discrepancy between the
graphs used during training
and test

Poor GNN generalizability!

Test Pitfalls

9
Jing Zhu et. al

Test Pitfalls

10
Jing Zhu et. al

Test Pitfalls I3 Data Leakage (b1):

If test target edges exist in the MP graph, it
results in higher likelihood of predicting
target edges existence

Overestimation of the model’s
predictive performance!

Goal
Goal: Given a graph 𝐺, a link prediction task, and a base GNN
model in a mini-batch training setting, design a framework that
proposes solutions to best avoid the training and test pitfalls I1,
I2 and I3.

11

One straightforward solution is to exclude all target edges.
At training time, naïve solution does not work well!

Jing Zhu et. al

Naive Solution Issues

12

𝑇!":	Exclude all
train target edges

• Graph Structure Corruption for the MP graph when ExcludeAll (isolated
components, isolated nodes).

• Batch size=1, too small MP graph, inefficiency and instability for
GNN training.

Jing Zhu et. al

Real Question

13

How can we achieve the best trade-off between
avoiding issues (I1)-(I2) and preserving the graph

structure in mini-batch training as much as possible?

Lower-degree nodes have higher relative degree change before and
after excluding all train target links in each mini-batch.

Jing Zhu et. al

Training Time Right Practice

14

• For high degree nodes, issues from one neighboring nodes (I1,I2) are
diluted and tend not to affect much.

• Only exclude the training target edges (𝑇low) incident to at least one low-
degree node.

𝑇#$%:	Exclude deg≤ 2
train target edges

Jing Zhu et. al

Theoretical Analysis

15

• The change in influence that a random node 𝑣𝑘 has on a high-
degree node 𝑣ℎ and a low-degree node 𝑣𝑙 before and after
excluding an edge incident to 𝑣ℎ and 𝑣𝑙, is higher on 𝑣𝑙.

Jing Zhu et. al

Test Time Right Practice

16

• Exclude all test target links to prevent the data leakage.
• Implementation: A module that automatically checks for the presence of

test target edges in the inference graph and removes them if necessary.

yx

yx

Jing Zhu et. al

Experiments
² Q1: How well does SpotTarget address issues (I1) and (I2) on

commonly-used graph benchmarks, which are dense?
² Q2: How well does SpotTarget perform on sparse graphs with very

skewed degree distributions?
² Q3: How well does SpotTarget address issues (I1)-(I2) for edges

incident to low-degree nodes on popular benchmarks?
² Q4: At test time, how much is the performance of GNN models

overestimated due to implicit data leakage (I3)?

17
Jing Zhu et. al

Training Pitfalls: Results on Dense Data

18

• Across all datasets and
models, SpotTarget achieves
the best results compared
with ExcludeNone(Tr) and
ExcludeAll.

• In many cases (6/11),
ExcludeAll leads to
performance degradation
because of corrupting the
structure of mini-batch
graphs.

FakeEdge
Jing Zhu et. al

Training Pitfalls: Results on Sparse Data

19

• SpotTarget achieves 14.9× better performance compared to ExcludeNone
across models.

• This verifies empirically that low-degree nodes suffer more from issues I1 and
I2, and excluding 𝑇low works well especially for datasets with many low-degree
nodes.

Jing Zhu et. al

Training Pitfalls: Results on Tlow

20

• Comparing with ExcludeNone(Tr) and ExcludeAll, SpotTarget achieves better
performance on various types of edges that are incident to low-degree nodes.

Jing Zhu et. al

Test Pitfalls: Data Leakage Quantification

• Due to data leakage I3,
using test edges causes a
fake performance boost
across datasets.

• In real-world deployed
systems, this should
always be avoided.

21
Jing Zhu et. al

Thanks! Questions?

22

