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Link Prediction (LP)
• Given a graph 𝒢 = (𝑉, 𝐸) with known edges 𝐸	represented 

in adjacency matrix 𝐀;  feature vector 𝐱 for each node;
• Find other potential edges in the graph
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Applications:
• Learn embeddings for a variety of 

downstream tasks: query response, 
reducing spam, universal embeddings, ...

• Specific link prediction applications: 
graph completion, …
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Dual Roles For Edges in LP

3Figure credit: Muhan Zhang (wlnm) 
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Common practice: include target links in the 
message passing graph at training and/or testing time
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Previous Works
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• Most discussion about target edge inclusion falls into subgraph-
based methods at training time 

- SEAL: noticed the inclusion of target links at training and 
proposed negative injection

- FakeEdge: discussed the distribution shift issue and 
resolved it via always adding or removing the target links, 
or combining the strategies

• Here, we aim to show simply excluding all target links does not 
fully solve the problem for both GAE and subgraph-based 
method. We further extend the target edge inclusion 
discussion to test time. 
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Contributions
• Systematic Analysis of the Target Link Inclusion Practices: We 

propose first thorough theoretical and empirical analysis on the 
effect of including target edges as message-passing edges at 
training and test time.

• Efficient Unified Framework: We propose SpotTarget, which 
automatically tackles these issues. We integrate this as a plug-
and-play framework into DGL.

• Extensive Experiments: We show that SpotTarget makes GNN 
models up to 15× more accurate on sparse graphs, and 
significantly improves their performance for low-degree nodes on 
dense graphs.
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Training Pitfalls
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Training Time
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Training I1: 
Overfitting (a1)

Train prediction 
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(a) Train graph



Training Pitfalls
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Test Time

Test Target Edge never 
Observed
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(b) Test graph
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Training Pitfalls
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Training I2: Distribution shift 
(a1, b2):

Discrepancy between the 
graphs used during training 
and test

Poor GNN generalizability!



Test Pitfalls
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Test Pitfalls
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Test Pitfalls I3 Data Leakage (b1):

If test target edges exist in the MP graph, it 
results in higher likelihood of predicting 
target edges existence 

Overestimation of the model’s 
predictive performance!



Goal
Goal: Given a graph 𝐺, a link prediction task, and a base GNN 
model in a mini-batch training setting, design a framework that 
proposes solutions to best avoid the training and test pitfalls I1, 
I2 and I3.
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One straightforward solution is to exclude all target edges. 
At training time, naïve solution does not work well!
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Naive Solution Issues
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𝑇!":	Exclude all
train target edges

• Graph Structure Corruption for the MP graph when ExcludeAll (isolated 
components, isolated nodes).

• Batch size=1, too small MP graph, inefficiency and instability for
GNN training.
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Real Question
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How can we achieve the best trade-off between 
avoiding issues (I1)-(I2) and preserving the graph 

structure in mini-batch training as much as possible?

Lower-degree nodes have higher relative degree change before and 
after excluding all train target links in each mini-batch.
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Training Time Right Practice
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• For high degree nodes, issues from one neighboring nodes (I1,I2) are 
diluted and tend not to affect much.

• Only exclude the training target edges (𝑇low) incident to at least one low-
degree node.

𝑇#$%:	Exclude deg≤ 2
train target edges
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Theoretical Analysis
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• The change in influence that a random node 𝑣𝑘 has on a high-
degree node 𝑣ℎ and a low-degree node 𝑣𝑙 before and after 
excluding an edge incident to 𝑣ℎ and 𝑣𝑙, is higher on 𝑣𝑙. 
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Test Time Right Practice
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• Exclude all test target links to prevent the data leakage.
• Implementation: A module that automatically checks for the presence of 

test target edges in the inference graph and removes them if necessary.
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Experiments
² Q1: How well does SpotTarget address issues (I1) and (I2) on 

commonly-used graph benchmarks, which are dense?
² Q2: How well does SpotTarget perform on sparse graphs with very 

skewed degree distributions?
² Q3: How well does SpotTarget address issues (I1)-(I2) for edges 

incident to low-degree nodes on popular benchmarks?
² Q4: At test time, how much is the performance of GNN models 

overestimated due to implicit data leakage (I3)?
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Training Pitfalls: Results on Dense Data
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• Across all datasets and 
models, SpotTarget achieves 
the best results compared 
with ExcludeNone(Tr) and 
ExcludeAll. 

• In many cases (6/11), 
ExcludeAll leads to 
performance degradation 
because of corrupting the 
structure of mini-batch 
graphs.

FakeEdge
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Training Pitfalls: Results on Sparse Data
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• SpotTarget achieves 14.9× better performance compared to ExcludeNone 
across models.

• This verifies empirically that low-degree nodes suffer more from issues I1 and 
I2, and excluding 𝑇low works well especially for datasets with many low-degree 
nodes.

Jing Zhu et. al



Training Pitfalls: Results on Tlow
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• Comparing with ExcludeNone(Tr) and ExcludeAll, SpotTarget achieves better 
performance on various types of edges that are incident to low-degree nodes.
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Test Pitfalls: Data Leakage Quantification

• Due to data leakage I3, 
using test edges causes a 
fake performance boost 
across datasets.

• In real-world deployed 
systems, this should 
always be avoided.
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Thanks! Questions?
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