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Recommendation System
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Recommendation has been widely applied in online services: 
 E-commerce, Content Sharing, Social Networking ...

Image credit: Jiliang Tang Jing Zhu et. al



Recommendation System as LP
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One typical approach for solving this is to cast as a Link Prediction 
(LP) task for feature-rich graphs.
 - Co-purchasing: Given item A, which item tend to be bought 
together with item A 
 - Features: Text descriptions, images of candidate items

Image credit: Jiliang Tang Jing Zhu et. al



Pretrained Models for GNNs
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For feature-rich graphs: Pretrained models such as BERT is 
typically adopted to generate feature embeddings for each node. 

?

Jing Zhu et. al



Why pretrained features may fail
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A subgraph of Amazon Co-purchasing graph (Amazon-CP).
Products have completely different visual features, but they are 
often bought together.

Jing Zhu et. al



Why pretrained features may fail
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The graph agnostic feature embeddings prevents fully utilize 
the potential correlations between graph structures and node 
features.



Research Question
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How can we improve node features obtained from 
Pretrained Models (PMs) for downstream graph tasks 

such as link prediction?

Graph-Centric Finetuning on the PMs!

Jing Zhu et. al



TouchUp-G
• General: Can be applied to a variety of graph 

tasks.
• Multi-modal: Can be applied any pretrained 

models from any modality, e.g., texts, images 
etc.

• Principled: Propose a novel metric: feature 
homophily to measure the correlation 
between node features and graph structure.

• Effective: Outperforms baselines on 4 real 
datasets, with up to 2× performance 
improvement across various tasks, metrics 
and modalities.
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ViT+

TouchUp-
G Wins!



Previous Works
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• Most work focuses on finetuning language models (LMs) improving node 
representation for node classification on text-rich graphs.

• TouchUp-G can be 
applied to any pretrained 
models from any modality, 
e.g., texts, images, and a 
variety of graph tasks, 
including node 
classification and link 
prediction.

[Chien+ ’22, Zhao+ ’23]
Jing Zhu et. al



TouchUp-G Pipeline
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Key Intuition:
 Make the node features obtained from the PMs graph-aware (Lstruct).
 Measure the awareness by feature homophily score.

Jing Zhu et. al
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TouchUp-G Pipeline
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Feature Homophily h
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Def: The tendency of nodes with similar features to be connected to each 
other. 

Feature Homophily is an implicit assumption shared by most GNNs. 

Zachary’s Karate Club

“Birds of a feather, flock together”
Majority of linked nodes are similar
• Social Networks (wrt. political beliefs, age)
• Citation Networks (wrt. research area)

Homophily

[Yang+ ’21]

Goal: Quantify the correlation 
between features and structures 
for any graph with features and 
decide if TouchUp-G is needed.

Jing Zhu et. al
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A vectorized extension of scalar assortativity. 

The Pearson correlation between the set of all head node features 𝑥𝑖 and 
the set of all tail node features 𝑥𝑗 . Bounded in [-1, 1].

Jing Zhu et. al

DETAILS

Feature Homophily h
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Graph-centric Finetuning

• For each training edge (𝑢, 𝑣) ∈ E, randomly sample a negative node 
m

• 𝑥′𝑢 = max(T(𝑥𝑢), 0), 𝑥′𝑣 = max(T(𝑥𝑣), 0), 𝑥′𝑚 = max(T(𝑥𝑚), 0) are the 
pretrained feature embeddings obtained from a pretrained model T

• Finetune T using binary cross entropy loss

16
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DETAILS



Experiments
² RQ1 - Effective: How accurate is TouchUp-G?
² RQ2 - Multi-modal: Can TouchUp-G handle other modalities (like, images), 

in addition to text?
² RQ3 - General: Can TouchUp-G handle other downstream tasks (like node 

classification), besides link prediction?
² RQ4 - Principled: How well is the feature representation learnt by 

TouchUp-G, according to feature homophily score, compared with features 
obtained directly from pretrained models? 
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Experiment Details

² Amazon-CP : We extract the copurchasing information from the metadata in 
Amazon-Review. Each product’s high-resolution image are used as feature.

² Books: Extract node feature is each book’s description and
the links capture if a reader who recommends one book will
recommend the other book. 

² For textual features, BERT/SciBERT is used as pretrained models. 
² For visual features, Vision Transformer (ViT) is used as pretrained models.

18
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Experiment Details
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² Baselines: 
§ Structure embeddings: Degree, Deepwalk 
§ Feature embeddings: BERT+, ViT+, Ogb+, SciBERT+, DeBERTa+

² Evaluation: 
§ LP – report MRR, Hits@10, and Hits@1
§ NC – report Acc

² GNN Backbones: SAGE, GCN, GATv2



RQ1 Effective (LP)
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Ogb-Products

Jing Zhu et. al



RQ1 Effective (LP)
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RQ2 Multimodal(LP)
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Amazon-CP 

TouchUp-G works better than ViT+ both 
quantitatively and qualitatively. 
TouchUp-G correctly predicts the ground 
truth in top-2 predictions while ViT+ fails. 

Jing Zhu et. al

ViT+

TouchUp-G Wins!

MRR MRR



RQ3 General (NC)
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TouchUp-G works better than BERT+, 
SciBERT+. 

For Ogb-Products, ogb+ mainly uses bag of 
words representation and works much 
better than BERT+, DeBERTa+. 

This indicates contextualized embeddings 
from PMs hurts downstream graph task 
performance, if the contextualization is 
irrelevant wrt. the downstream task. 

Jing Zhu et. al



RQ4 Principled: Feature Homophily Score
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All datasets exhibits a more than 2× increase in 
feature homophily score. 

Jing Zhu et. al



Thanks! Questions?
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We thank the following for the helpful feedback on this project. 


